Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB.

نویسندگان

  • David Maag
  • Micah J Maxwell
  • Douglas A Hardesty
  • Katie L Boucher
  • Namrata Choudhari
  • Adam G Hanno
  • Jenny F Ma
  • Adele S Snowman
  • Joseph W Pietropaoli
  • Risheng Xu
  • Phillip B Storm
  • Adolfo Saiardi
  • Solomon H Snyder
  • Adam C Resnick
چکیده

The second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), formed by the p110 family of PI3-kinases, promotes cellular growth, proliferation, and survival, in large part by activating the protein kinase Akt/PKB. We show that inositol polyphosphate multikinase (IPMK) physiologically generates PIP(3) as well as water soluble inositol phosphates. IPMK deletion reduces growth factor-elicited Akt signaling and cell proliferation caused uniquely by loss of its PI3-kinase activity. Inhibition of p110 PI3-kinases by wortmannin prevents IPMK phosphorylation and activation. Thus, growth factor stimulation of Akt signaling involves PIP(3) generation through the sequential activations of the p110 PI3-kinases and IPMK. As inositol phosphates inhibit Akt signaling, IPMK appears to act as a molecular switch, inhibiting or stimulating Akt via its inositol phosphate kinase or PI3-kinase activities, respectively. Drugs regulating IPMK may have therapeutic relevance in influencing cell proliferation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Expanding Significance of Inositol Polyphosphate Multikinase as a Signaling Hub

The inositol polyphosphates are a group of multifunctional signaling metabolites whose synthesis is catalyzed by a family of inositol kinases that are evolutionarily conserved from yeast to humans. Inositol polyphosphate multikinase (IPMK) was first identified as a subunit of the arginine-responsive transcription complex in budding yeast. In addition to its role in the production of inositol te...

متن کامل

Gene transcription by p53 requires inositol polyphosphate multikinase as a co-activator

The tumor suppressor p53 is a major transcription factor that induces genes regulating cell cycle arrest and death and which is inactivated in about half of all human cancers. Despite considerable research on p53, mechanisms regulating its activation have not been fully elucidated. We have recently established that the enzyme inositol polyphosphate multikinase (IPMK) is a transcriptional co-act...

متن کامل

Inositol polyphosphate multikinase signaling in the regulation of metabolism

Inositol phosphates (IPs) act as signaling messengers to regulate various cellular processes such as growth. Inositol polyphosphate multikinase (IPMK) generates inositol tetrakis- and pentakisphosphates (IP₄ and IP₅), acting as a key enzyme for inositol polyphosphate biosynthesis. IPMK was initially discovered as an essential subunit of the arginine-sensing transcription complex in budding yeas...

متن کامل

Multiple Host Kinases Contribute to Akt Activation during Salmonella Infection

SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We sh...

متن کامل

Novel inositol phospholipid headgroup surrogate crystallized in the pleckstrin homology domain of protein kinase Balpha.

Protein kinase B (PKB/Akt) plays a key role in cell signaling. The PH domain of PKB binds phosphatidylinositol 3,4,5-trisphosphate translocating PKB to the plasma membrane for activation by 3-phosphoinositide-dependent protein kinase 1. The crystal structure of the headgroup inositol 1,3,4,5-tetrakisphosphate Ins(1,3,4,5)P4-PKB complex facilitates in silico ligand design. The novel achiral anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 4  شماره 

صفحات  -

تاریخ انتشار 2011